
 Home Fundamentals Guide Code Links Tools Feedback

High Performance Delphi

Delphi Optimization Guidelines

 Home Fundamentals Guide Code Links Tools Feedback

Copyright © 2003 Robert Lee (rhlee@optimalcode.com)

The guidelines presented here fairly general but with a Delphi specific focus. Additionally the
focus is on modern Intel CPUs (Pentium and Pentium II). Other CPUs, for instance the AMD
K6-2 and later, may also be good choices and may benefit from the optimizations listed
here. However, they are not as well documented publicly so it is difficult to know for sure.

The guidelines fall into two general types: 1) coding styles and 2) specific optimization
techniques. When writing code, it is common for there to be multiple ways to proceed. Some
of these ways generally tend to result in faster code. You might call it passive optimization.
This is the "coding style" type of optimization. However, for those specific routines that are
performance bottlenecks this is often not sufficient. In these cases you need to actively
optimize the routine. The guidelines that fall into this group are of the second type,
"optimization techniques". Additionally, they are divided into functional groups:

General Guidelines

Integer Guidelines - Relates to any ordinal type, including characters

String Guidelines - Relates to string and PChar issues

Floating Point Guidelines

Note: that all the techniques presented here assume that optimizations are ON. (Obvious,
but needs to be said nonetheless.)

http://delphitools.info/OptimalCode/opguide.htm Page 1 / 1

http://delphitools.info/OptimalCode/opguide.htm
http://delphitools.info/OptimalCode/general.htm
http://delphitools.info/OptimalCode/integer.htm
http://delphitools.info/OptimalCode/string.htm
http://delphitools.info/OptimalCode/float.htm
http://delphitools.info/OptimalCode/opguide.htm

 Home Fundamentals Guide Code Links Tools Feedback

High Performance Delphi

General Optimization Guidelines

Contents

Style Guide

Style vs
Efficiency

Simplicity

Local Vars

Parameters

Nested Routines

Pointers

Nested
Procedures

Linked Lists vs
Arrays

Arrays

Exceptions

typecasting vs
Absolute

Sets

Pentium II
issues

For loops

interfaces

Optimization
Guide

Be Flexible

Time your code

Code
Alignment

CPU Window

Loop Unrolling

Conditionals
and Loops

Loop
conditionals

Contitional path

assembler

for vs while

Memory Usage

Case
Statements

Moving and
Zeroing
Memory

Global Data

While Loops

Pointers

Checking
Method
Pointers

Enumerated
types

Virtual methods

Style Guidelines

Coding Style versus efficiency

Optimization involves not only the speed of your code, but also the speed with
which you create and debug your code. This means that you are not doing
yourself any favors by creating fast but incomprehensible code. Fortunately
creating optimal code in Delphi rarely requires ugly code. In fact, optimal code
is often elegant code as well. Additionally, within a given application it is
likely that the same sort of techniques will be used frequently. Thus, you can
essentially set the coding style to what gives the best performance when it
matters.

Keep it simple

When it comes to the Delphi optimizer, complexity kills. Keep routines simple
(no more than about 5 to 8 variables "in play"). Do not do too much in any
single loop. Overloading a loop causes variable addresses, array indices etc. to
be reloaded on each iteration. Loop overhead is actually quite low so it is
often advantageous to split a complex loop into multiple loops or to move the
innermost one or two loops to a separate routine. Done properly, this will have
the added benefit of improving the readability of your code.

Strongly favor local variables

Local variables are those declared within a routine in addition to any
parameters passed. Only local variables can be converted into register
variables, and register variables equal speed. Consequently, it is often
advantageous to copy data into a local variable prior to using it. Typically this
is most advantageous when the variable is to be used within a loop. Thus, the
overhead of copying is offset by speedy reuse of the copied data. This
optimization is particularly useful if class members are used in a tight loop.
Delphi tends to load the pointer / class member just prior to its use within the
loop, adding a lot of unnecessary overhead.

There is one exception to this rule: arrays with elements of a simple type. If
you have an array of constant size and constant data, making it global will
save a register during calculations. Since saving a single register is not worth
a lot, this should only be used for constant structures (conversion or
transformation tables) where having a global structure makes some sense to
begin with.

Keep the number of parameters low

Small but heavily used routines should not have more than three parameters,
as that is the maximum that can be passed by register. By following this rule
you maximize the use of registers and give the Delphi optimizer a better
chance to improve your code. Note that class methods have a hidden
parameter Self that is always passed implicitly so for these only two
parameters are left.

Do not use nested routines

Nested routines (routines within other routines; also known as "local
procedures") require some special stack manipulation so that the variables of
the outer routine can be seen by the inner routine. This results in a good bit of
overhead. Instead of nesting, move the procedure to the unit scoping level
and pass the necessary variables - if necessary by reference (use the var
keyword) - or make the variable global at the unit scope.

http://delphitools.info/OptimalCode/general.htm Page 1 / 13

http://delphitools.info/OptimalCode/opguide.htm

Pointer variables

A valuable technique is to take advantage of pointers. A lot of programmers
shy away from pointers due to the potential for access violations, memory
leaks and other low-level problems. However, pointers are a valuable tool in
optimizing code in Delphi. Fortunately, this does not mean you have to convert
all your data references to pointers. What it does mean is that you should
take advantage of pointers as temporary references into your data. These
temporary variables will typically be optimized into register variables.
Consequently, you really are not adding any machine code, you are only
providing a clue for the compiler that it needs to hold on to the intermediate
address. You can use pointers much the same way as you would use a with
statement. That is, use them to simplify complicated or redundant addressing
in complex data structures. In the case of with statements, this is exactly
what the compiler does internally. For example:

with Structure1.Structure2[i] do
begin
 ...
end;

at the compiler-level becomes:

InnerStructure := Structure1.Structure2[i]; // if it is a class
InnerStructure := @Structure1.Structure2[i]; // some other type
begin
 ... // references to InnerStructure
end;

Linked lists vs. Arrays

Finding the trade-off between linked lists and arrays is a classic design
problem. On older computers (Pentium and before) integer multiplication was a
slow operation. Since multiplication is the key to accessing arrays this shifted
the performance balance towards Linked lists in some cases. Is it random
access or sequential access? Obviously, if you truly need random access then
an array is the way to go for anything more than about 5 elements (this is a
rule of thumb based on experimentation). For sequential access or quasi-
sequential access the short answer is that arrays are better for simple element
types and linked lists are better for larger types.

Multiplication on the Pentium II is now much much faster. Consequently, array
access is always faster.

Types of Arrays

In Delphi, arrays come in many flavors: Static, Dynamic, Pointer and Open.
Static arrays are the classic Pascal array type (A: array[0..100] of Byte).
Dynamic arrays are the new array type introduced with Delphi 4 (A: array of
Byte). Pointer arrays are simply pointers to Static arrays, however, the actual
number of elements may not match that of the array boundaries. Finally Open
arrays look like dynamic arrays but are exclusively used as parameters of
routines. The underlying implementation of all these arrays varies quite
substantially. From an efficiency viewpoint Static and Pointer arrays are the
best choice, followed by Open, then Dynamic arrays. However, Static arrays
are often too inflexible, and Pointer arrays can create painful management
issues. Fortunately, the various types are convertible. For arrays without a
fixed size, the current best choice is to manage them as Dynamic arrays, and
convert them to Pointer arrays as needed.

Dynamic arrays are much like huge strings (AnsiStrings) in that the variable is
actually a pointer to the array's first element. Thus, converting a Dynamic
array to a pointer arrays is simply an assignment. While the length (size) of
the Dynamic array is stored just before the first element, using High or Length
on a Dynamic array generates a function call rather than some compiler
"magic" to extract the length - in fact, High calls Length. Consequently, do not
repeatedly get the size of the array via these functions. Get it once (in the
routine) and save it.

Both Dynamic and Open arrays incur a fair amount of overhead when used as
parameters unless you use the const or var modifiers. Note that, just like class
parameters, a const modifier on a Dynamic array only prevents you from
changing the entire array, not from modifying its content.

Let's finish with an example for converting the various array types:

http://delphitools.info/OptimalCode/general.htm Page 2 / 13

type
 TDoubleArray = array of Double;
 TStaticDoubleArray = array[0..0] of Double;
 PDoubleArray =^ TStaticDoubleArray;

function Sum(const X: TDoubleArray): Double;
var
 P: PDoubleArray;
 i: Integer;
begin
 P := Pointer(X);
 Result:=0;
 for i := 0 to Length(X)-1 do
 Result := Result + P[i];
end;

Exceptions

Do not use exceptions just to jump out of a bit of code, or as a catch-all on
input errors. They add overhead with both the try..finally block and with
throwing the exception itself. Use the break, continue, or exit statements to
do unusual flow control, and validate inputs (like pointers) as early as
possible, but outside any loop.

Use type-casting rather than absolute

A technique sometimes used to avoid typecasting is to "overlay" a variable
with another of a different type by using the absolute keyword. However, this
prevents the variable from becoming a "fast" register variable. It is better to
type-cast and save the original variable into a new variable. For example:

procedure DoSomething(s: PChar);
var
 ByteArray: PByteArray absolute s;
begin
 ...

should be changed to or written as:

procedure DoSomething(s: PChar);
var
 ByteArray: PByteArray;
begin
 ByteArray := PByteArray(s);
 ...

Working with Sets

There are two compiler magic functions called Include and exclude, that are
quite efficient for adding and subtracting single elements form sets. Thus, you
should use these instead of " s:=s+[a];" sort of statement. In fact, it is
efficient enough that a small number of repeated uses of Include or exclude
can still be better than the above notation.

Pentium II specific bottlenecks

It has occurred to me that while many of the techniques presented here are
based upon how Pentium II processors bottleneck, I have never actually stated
how this works. The long and detailed version can be found in Intel's
documentation and in Agner Fogs Pentium Optimization Guide. Here I present
a quickie version slanted towards Delphi's compiler output. Having a general
understanding of this process will may help you decide what needed
optimizing and what does not.

First off, the Pentium II is a superscalar pipelined processor with out-of-order
execution capabililities. Basically that means that each instruction gets
"executed" in steps and can march along one of a few different channels.
Specifically, each instruction has to be loaded, executed and retired with the
out-of-order buffer acting as a sort of "waiting room" between the load and
execution steps. This seems simple enough, but the complications start to
build once the multiple channels part is added in, because not all channels can
handle all instructions. There are 3 loading channels, one of which can take
anything while the other two can only handle "simple" instructions. There are 5
execution channels (called ports by Intel), one is general purpose integer,
another is general purpose integer plus floating point, the third handles
address math, and the fourth and fifth load and store data. The retiring step
also has 3 channels. There is also the issue of latency. That is, many
instructions take longer than 1 cycle to execute.

http://delphitools.info/OptimalCode/general.htm Page 3 / 13

So what does all this mean? Well, it means you can bottleneck in a whole
bunch of different ways. Basically, any channel of any step can be a bottleneck
if too many instructions that require that specific unit are encountered. Thus,
while the CPU can theoretically process 3 instructions per cycle, it may be
limited to 2 or 1 or even less due to the mix of instructions currently being
executed. The out-of-order "waiting room" helps with this situation by allowing
instructions not dependant on a currently executing operation to go around any
that may be waiting for a specific port and execute on a different port. This
helps with the small bottlenecks where there is a temporary backup on a given
port. However, it does nothing for the large scale backups. For instance,
executing a large series of floating point operations, say a loop around a
complex math expression, will typically be constrained by the limitation of
there being only one FP capable port. Thus, the throughput drops to 1
instruction/cycle. Now the loop also has some other overhead instuctions
associated with it (incrementing the loop variable and jumping) These
instructions incur essentially zero cycles since they can be fitted in around the
backed up FP port.

In Pascal terms, this means that any tight, repetative operation will probably
be constrained by only one aspect of the operation. It might be Floating point
as described above, or it might be integer math or memory addressing. In any
case, the only optimizations that will have any impact are those that go after
that main aspect. Pruning the ancillary code back will have no effect.

Inside the For statement

Implementing For statements is one of the more complex jobs the compiler
has to deal with. This is in part, because the compiler goes to great pain to
avoid integer multiplication, which was quite slow on CPUs before the Pentium
II. Thus, For loops are deconstructed into pseudocode that looks something
like this:

Original Loop:

 For i:=m to n do
 A[i]:=A[i]+B[i];

Becomes:

 PA:=@A[m];
 PB:=@B[m];
 counter=
 m-n+1; ifcounter>0 then
 repeat
 PA^:=PA^+PB^
 inc(PA);
 inc(PB);
 dec(Counter);
 until counter=0;

There are other configurations, but this is the most common, and it is the one
that causes problems. The problem stems from the fact that the variable i
appears nowhere in the deconstructed version. However, when stepping
through this code in the debugger, watching i will show the value of the new
variable most similar to i, which is counter. This has sent many a programmer
into fits of hysteria thinking that their loop is being executed backwards. It is
not. The debugger is merely misinforming you.

This example also illustrates the substantial overhead associated with for
loops. Notice that three variables need to be incremented on each iteration,
and that there is a fair amount of initialization code. In some cases, this
overhead is lessened. For instance if m and n were compile-time constants, Or
if m=0, and A and B were already pointers that were not used again in the
code, then overhead code would be reduced.

Interfaces

This is just a beginning pass at the performance implications of using
interfaces. Basicaly, an interface is implemented as a cross between a string
and a class. Interfaces, like strings are reference counted which means every
time you create or copy one, and every time an interface variable goes out of
scope there is some overhead. Thus, treat interface variables more like you
would string variables than object variables. (Pass by const where possible,
watch out for using too many temp variables, etc.) Internally, interfaces
behave something like an object with all virtual methods only worse. There are
in fact two layers of indirection. So treat them accordingly.

http://delphitools.info/OptimalCode/general.htm Page 4 / 13

Another note on the subject of interfaces:

Hallvard Vassbotn: For any interfaced global variable, the compiler
automatically adds another global variable that contains the address of this
first variable. When external units access the variable, it is used through the
implicit pointer variable. The reason for this is to support packages and is
done even if you are not using packages. (See article in The Delphi Magazine
issue 43 for more details.)

Optimization Techniques

Keep an open mind

Optimization is best approached as a top down issue. The most powerful
concept in optimization can be stated as "If it takes too long to figure out the
answer, then change the question." The best improvements in performance will
always come from changes made at the design and algorithmic level. By the
time you get down to coding specifics, your options are quite limited.
Unfortunately, like the rest of design, it is rather difficult to break down this
high-level optimization into a nice set of rules. Nonetheless, the first thing to
do if performance needs improvement, is to look at the complete problem at
hand, starting optimization at the top and then working down.

Time your code

Timing code is generally called "profiling". If you want to improve the
performance of your code, you first need to know precisely what that
performance is. Additionally, you need to re-measure with each change you
apply to your code. Do not spend a single second twiddling code to improve
performance until you have analytically determined exactly where the
application is spending its time. I cannot emphasize this enough.

Code alignment

Be aware that the exact positioning of your code and its layout in the
executable module can affect its timing. The reason for this is that there are
penalties for jumping to "sub-optimal" address alignments. There is very little
you can do to influence this alignment (this is a linker task), except to be
aware of it. While it is possible to insert spacing code into a unit, there is on
guarantee that your alignment efforts will be permanently rewarded since 32
bit Delphi aligns only on 4 byte (DWord) boundaries. Thus, the next change to
any routine in any unit above the current routine may shift your code. This
problem can result in speed penalties as great as 30% in tight loops.
However, in more typical loops the problem is substantially less. Also note
that this can make timing code and therefore optimization difficult since
seemingly innocuous shifting in the code can affect the performance.
Consequently, if you make a change that you "know" should increase
performance but it does not, it may be the shifts in code alignment are hiding
improvements in your code.

Utilize the CPU window

You do not need to be an assembler programmer to take advantage of the CPU
window. At the very least it will give you an idea of the underlying complexity
involved in each statement. Very often you can estimate the effectiveness of a
particular optimization technique by simply counting the number of instructions
produced for a given operation. For instance, many references to the ebp
register (as in mov eax,[ebp-$04]) within a loop are an indication that variables
are continually reloaded. These reloadings are unnecessary and thus are a
prime target for optimization.

In Delphi 4.0, the CPU window is readily accessed from the main menu.
However, both version 2.0 and 3.0 of Delphi also have hidden CPU windows.
To allow access to these you need to add an entry in the registry, using the
registry editor "RegEdit.exe":

[HKEY_CURRENT_USER\Software\Borland\Delphi\2.0\Debugging]
"EnableCPU"="1"

[HKEY_CURRENT_USER\Software\Borland\Delphi\3.0\Debugging]
"EnableCPU"="1"

Unroll small loops

http://delphitools.info/OptimalCode/general.htm Page 5 / 13

Loop unrolling is a classic optimization technique, and it can be easily done in
Delphi. However, it is only worth doing on fairly small loops. Unrolling
essentially consists of doing what was originally multiple iteration operations
within a single pass through the unrolled code. This reduces the relative loop
overhead. Since the branch prediction mechanism on Pentium II CPUs does not
perform well (read: causes penalties) on very tight loops, unrolling might be
beneficial there, too.

In Delphi, the best way to unroll is usually with a while loop. For example:

i := 0;
while i < Count do
begin
 Data[i] := Data[i] + 1;
 Inc(i);
end;

becomes:

i := 0;
while i < Count do
begin
 Data[i] := Data[i] + 1;
 Data[i+1] := Data[i+1] + 1;
 Inc(i, 2);
end;

The downside to loop unrolling is that you have to worry about what happens
when Count is not divisible by the factor two. You typically handle it this way:

i := 0;
if Odd(Count) then
begin
 Data[i] := Data[i] + 1;
 Inc(i);
end;

while i < Count do
begin
 Data[i] := Data[i] + 1;
 Data[i+1] := Data[i+1] + 1;
 Inc(i, 2);
end;

You can unroll by whatever factor you want. However, the diminishing marginal
return on unrolling by progressively larger values coupled with the growing
complexity of the code makes unrolling by more than a factor of 4 rather
uncommon.

Eliminate conditionals within loops

It is common for there to be if statements within a loop with the conditionals
for the statement based on the loop index. Frequently, these can be removed
from the loop by unrolling the loop or splitting the loop into two loops. An
example of the former would be when statements must be executed every
other iteration. An example of the latter would be when statements are
executed on a specific iteration.

Reduce the number of looping conditionals

A common coding structure is to loop while some condition is true and while
the loop index is less than some value. If the loop is small - and it often only
consists of incrementing the loop index - then the bulk of the loop's execution
time is spent evaluating the loop conditionals. It is sometimes possible to
reduce the number of these conditionals by making one condition happen when
the other would have. Take the example of scanning for the occurrence of a
specific character in a string:

i := 1;
l := Length(s);
while ((i <= l) and (s[i] <> c)) do
 Inc(i);
...

The two conditionals can be combined by placing the desired character in the
last position in the string:

i := 1;
l := Length(s);

http://delphitools.info/OptimalCode/general.htm Page 6 / 13

lastc := s[l];
s[l] := c;
while s[i] <> c do
 Inc(i);
s[l] := lastc;
...

This results in nearly a 2x speed improvement. This optimization requires
some forethought to ensure that there is an empty space available at the end
of the data. Strings and PChars always have the null at the end that can be
used. Also this technique, may cause undesired side-effects in a multi-
threaded environment due to changing the data being scanned. This technique
also works well with unrolling, as it often simplifies the problems associated
with needing partial iterations. See FindMax as an additional example of this
technique.

Make the default path, the "no-jump" path

This technique dates way back. However, there is still a glimmer of truth in it.
The original reason (jumping took a lot of time) really isn't the problem now.
The problem now is more related to code alignment and branch prediction. On
the alignment side, if you do not jump than there is no problem with
alignment. On the branch prediction side, a branch is not even considered for
prediction until it is actually taken once.

Take advantage of break, exit and continue

These flow control statements are often derided as being "bad programming".
However, they do have their place, especially in performance optimizing code.
The need for these statements typically arises when some condition is not
determined until the middle of a loop. Often they are avoided by adding
boolean variables and additional conditionals to transfer control. However,
these additions cost execution time, and can often make the code look more,
rather than less, complex.

Resorting to assembler

Do not attempt to use assembler to improve performance on Pentium II CPUs.
This is somewhat controversial, but it is a pretty good rule of thumb. The out-
of-order execution capabilities of Pentium II class CPUs pretty much eliminate
any advantage you might gain by recoding your algorithm in assembler. In
several tests, I have found that assembler vs. optimally coded Pascal rarely
exceeds a 10% difference. There are always exceptions to this rule (for
instance this Alpha Blending code) and even times where arguably assembler
is cleaner than Pascal, but the point is that you should not just jump to
assembler when code seems too slow.

On the other hand, Pentium CPUs can often benefit from assembler coding.
Improvement factors of around two are not uncommon. However, optimal
coding for the Pentium processor can easily result in rather non-optimal code
on other processors. This applies to floating point code in particular. If you
choose to pursue this path then study Agner Fog's assembler optimization
manual carefully.

For versus While loops

Loops with a pre-determined number of iterations can be implemented either
with a For loop or a While loop. Typically, a For loop would be chosen. However,
the underlying implementation of the For loop is not as efficient as that of the
While loop in some instances (See Inside the For statement). If the contents of
the loop involve no arrays or only single-dimensional arrays with elements of
sizes 1, 2, 4, or 8 bytes, the code generated for a While loop will be more
efficient and cleaner than for the comparable For loop. On the other hand,
multi-dimensional arrays or arrays with elements of other sizes as those listed
above are better handled by For loops. It is often possible to convert one of
the latter into the former, typically by using pointers. This approach is likely to
increase the efficiency of the code.

Additionally, using a While loop appears to reduce the complexity factor. Thus
it may be possible to trade For loop usage against splitting up a routine. An
example of this is the row reduction step of Gauss Elimination. The optimal
configuration with For loops is to factor out the two innermost loops into a
separate routine. With While loops however, all three loops can be kept
together.

http://delphitools.info/OptimalCode/general.htm Page 7 / 13

http://delphitools.info/OptimalCode/exmax.htm
http://delphitools.info/OptimalCode/exalpha.zip
http://delphitools.info/OptimalCode/exstrlen.htm
http://agner.org/assem/
http://delphitools.info/OptimalCode/exgauss.htm

Of course there has to be an exception. If the index is never used within the
loop then For is usually a better choice. Also give For as shot if both loop
bounds are compile-time constants.

Note that for a While loop to be as efficient as possible, the loop condition
should be as simple as possible. This means that, unlike For loops, you need
to move any calculation of the iteration count out of the While statement and
into a temporary variable.

Large Memory requirement problems

On Pentium II class CPUs it is often the case that cache or memory
bottlenecks are the main optimization problem, especially if the data set being
manipulated is large. If this is the case, then an entirely different strategy is
in order. Focus on reducing the memory requirements and on reducing the
number of passes through the data. In other words, pack it tight and do as
much as possible with it before moving on. This may be at odds with some of
the other suggestions presented here, so it is necessary to determine which
factor is more rate limiting by experimenting with different implementations
and profiling these. A good indication that a cache and/or memory bottleneck
is dominating is when apparent improvement in the code being executed does
not increase the performance.

Case statement optimization

Case statements are implemented as follows: First,the compiler sorts the list
of enumerated values and ranges. This means that the placement individual
cases within the Case statement is irrelevant. Next, The compiler uses a sort of
binary comparison tree strategy along with jump tables to test the cases. The
decision between jump table and comparison tree is based on the "density" of
the enumerated cases. If the density is sufficiently high a jump table will be
generated. If the density is too low then the list will be split approximately in
half (with ranges counting as 1 element in the list rather than as the number
of values spanned). The process then starts over on each of the sub-branches.
That is, density check then either generate jump table or split. This continues
until all the cases are handled.

So what optimization possibilities exist? Basically, it boils down to this. Case
statements are quite well optimized, but not perfect. The "splits" on the
binary comparison tree can come at awkward places. Consequently, if you have
groups of consecutive values interspersed with gaps, it is better to make each
range of consecutive values its own Case statement and then make an overall
Case statement with the underlying ranges each being a single case. This
works because ranges won't be split but sequential cases will be. The impact
of this is that it tends to create jump tables covering each entire sub-range.
An Example:

Before:

 Case x of
 100 :DoSomething1;
 101 :DoSomething2;
 102 :DoSomething3;
 103 :DoSomething4;
 104 :DoSomething5;
 105 :DoSomething6;
 106 :DoSomething7;
 107 :DoSomething8;
 200 :DoSomething9;
 201 :DoSomething10;
 202 :DoSomething11;
 203 :DoSomething12;
 204 :DoSomething13;
 205 :DoSomething14;
 206 :DoSomething15;
 207 :DoSomething16;
 208 :DoSomething17;
 209 :DoSomething18;
 210 :DoSomething19;
 end;

After:

 Case x of
 100..107 :
 case x of
 100 :DoSomething1;
 101 :DoSomething2;

http://delphitools.info/OptimalCode/general.htm Page 8 / 13

 102 :DoSomething3;
 103 :DoSomething4;
 104 :DoSomething5;
 105 :DoSomething6;
 106 :DoSomething7;
 107 :DoSomething8;
 end;
 200..210 :
 case x of
 200 :DoSomething9;
 201 :DoSomething10;
 202 :DoSomething11;
 203 :DoSomething12;
 204 :DoSomething13;
 205 :DoSomething14;
 206 :DoSomething15;
 207 :DoSomething16;
 208 :DoSomething17;
 209 :DoSomething18;
 210 :DoSomething19;
 end;
 end;

Also, Case statements do not have any provision for weighting by frequency of
execution. If you know that some cases are more likely to be executed than
others. You can use this information to speed the execution. The way to
achieve this is to cascade if and Case statements to prioritize the search
order. An Example:

Before:

 Case x of
 100 :DoSomething1;
 101 :DoSomethingFrequently2;
 102 :DoSomething3;
 103 :DoSomething4;
 104 :DoSomething5;
 105 :DoSomething6;
 106 :DoSomething7;
 107 :DoSomething8;
 end;

After:

 if x=101 then
 DoSomethingFrequently2
 else
 Case x of
 100 :DoSomething1;
 102 :DoSomething3;
 103 :DoSomething4;
 104 :DoSomething5;
 105 :DoSomething6;
 106 :DoSomething7;
 107 :DoSomething8;
 end;

Moving and zeroing memory

The built-in methods supplied with Delphi for moving memory and filling it
with zeros are Move and FillChar respectively. These routines are based around
the rep movsd and rep stosd assembler instructions, which are fairly efficient.
However, there is some extra cleanup code associated with each of the
routines that can reduce their efficiency, especially when working on smaller
amounts of memory. Additionally, there are special data alignment
considerations on Pentium II CPU's that can have a substantial effect.

The first pass solution to these issues is simply to use a plain loop to do the
task. This is especially effective if the data elements being handled are 32 or
64 bit or the structure involved is only partially zeroed/moved (e.g. sub-
section of a matrix). However, the loop approach is less effective for arrays of
large records or for smaller elements like byte or word. You can unroll the loop
and use typecasting to further improve the situation but this complicates the
code substantially and only results in a small improvement.

At this point it is time to start looking at a specialized routine. The first issue
is the boundary size of the structure. Working with 32bit quantities is always
the fastest approach. However, if the structure is not evenly divisible by 4
bytes this can be a problem. The solution used by Move and FillChar is to round
down the size to the nearest dword (4 byte) boundary, then copy the

http://delphitools.info/OptimalCode/general.htm Page 9 / 13

remainder separately. As was mentioned, this extra overhead can be costly on
smaller structures. However, many structure are in fact evenly divisible even if
they do not at first appear to be. All memory allocations are rounded up to the
next dword boundary. Thus a string of 2 characters is really 4 bytes long. It is
usually faster to copy or zero this extra data than to avoid it. Obviously care
must be taken when using this shortcut and it should be well documented.

Dealing with the data alignment issue is more complicated, and more relevant
only on larger structures. I will skip the description and simply show the code:

procedure ZeroMem(A:PDataArray; N:integer);
var
 i,c:integer;
 B:PDataArray;
begin
 B:=Pointer((integer(A)+15) and $FFFFFFF0);
 c:=integer(@A[N])-integer(B);
 fillChar(A^,N*SizeOf(TData)-c,#0);
 fillChar(B^,c,#0);
end;

This will align on a 16 byte boundary by skipping over some of the data. Of
course the skipped part must be properly dealt with, thus the two calls to
fillChar. Obviously, this is not the fastest approach since you have now got the
overhead of fillchar*2, but it does illustrate the technique. For maximum
speed, this is one of those cases where you have to resort to assembler.

procedure ZeroMem32(P:Pointer;Size:integer);

// Size=number of dword elements to fill

// assumes that Size>4
asm
 push edi
 mov ecx,edx
 xor edx,edx
 mov dword ptr [eax],edx
 mov dword ptr [eax+4],edx
 mov dword ptr [eax+8],edx
 mov dword ptr [eax+12],edx
 mov edx,eax
 add edx,15
 and edx,-16
 mov edi,edx
 sub edx,eax
 shr edx,2
 sub ecx,edx
 xor eax,eax
 rep stosd
 pop edi
end;

The move version is very similar. The Dest pointer is the one aligned:

procedure MoveMem32(Src,Dest:Pointer;Size:integer);

// Size=number of dword elements to fill

// assumes that Size>4
asm
 push edi
 push esi
 push ebx
 mov ebx,[eax]
 mov [eax],ebx
 mov ebx,[eax+4]
 mov [eax+4],ebx
 mov ebx,[eax+8]
 mov [eax+8],ebx
 mov ebx,[eax+12]
 mov [eax+12],ebx
 mov ebx,edx
 add ebx,15
 and ebx,-16
 mov edi,ebx
 sub ebx,edx
 shr ebx,2
 sub ecx,ebx
 lea esi,[eax+4*ebx]
 rep movsd
 pop ebx
 pop esi
 pop edi
end;

http://delphitools.info/OptimalCode/general.htm Page 10 / 13

Global Data revisited

There is a case where using a global structure is especially advantageous,
namely two-dimensional (or rather double-indexed) arrays with elements of a
simple type and where access is non-sequential for both indices. By making
the data structure global, both indices can be applied simultaneously to access
the structure, thereby avoiding additional instructions to combine the indices.

While loops revisited

An additional technique that can be applied to While loops operating on arrays
that saves on CPU registers is to shift around all the references to the index
variable so that you can count from a negative number toward zero. This frees
the register that would have been needed to hold the iteration count. For
example:

 i := 0;
 while i < Count do
 begin
 Data[i] := Data[i] + 1;
 Inc(i);
 end;

becomes:

type
 TRef = array[0..0] of TheSameThingAsData;
 PRef = ^TRef;
var
 Ref: PRef;
...
 Ref := @Data[Count];
 i := -Count; // Assign NEGATIVE count here
 while i < 0 do // and count UP to zero
 begin
 Ref[i] := Ref[i] + 1;
 Inc(i);
 end;

Pointer variables revisited

In addition to the reduced dereferencing discussed above, using a pointer
variable can also serve to increase the "priority" of an already existing pointer
variable. In the example shown below, taken from a Sub-String replacement
routine, the PChar variable pSub1 was being reloaded within the loop (this could
be seen in the CPU Window). By assigning it to pTemp and then using pTemp
within the loop, the loading was shifted outside the loop, saving instruction
cycles.

pTemp := pSub1; // increases "priority" of pSub1
while iStr[k] = pTemp[k] do
 Inc(k);

Avoid checking methods pointers with assigned

Checking method pointers for nil is a common operation typically associated
with calling events. Unfortunately, if assigned(FSomeEvent) then ... does a 16bit
compare of the high word of the code address for the method pointer. This is
rather odd and completely unnecessary, and I can only guess that it is some
sort of holdover from 16bit Delphi 1. The workaround is to check the code
address directly (if assigned(TMethod(FSomeEvent).code) then This is a bit
ugly and so you may only want to follow it in particularly time critical sections.

Controlling the size of enumerated types

If you use enumerated types (such as TSuits=
(Diamonds,Hearts,Clubs,Spades)) include the {$MinEnumSize 4} (or {$Z4})
directive to force all enum variables to be 32bit. If you have compatibility
issues you can simply turn it on for the type declarations of interest. For
instance:

type
{$Z4}
 TSuits=(hearts,clubs,diamonds,spades);
{$Z1}

Utilization of this directive is especially effective for enumerated types greater

http://delphitools.info/OptimalCode/general.htm Page 11 / 13

http://delphitools.info/OptimalCode/exstrrep.zip

than 256 elements. These result in word sized variables which are quite slow.

Virtual methods

It should not be surprising that virtual methods incur more overhead than
static methods. Calling a virtual method requires two pointer dereferences and
an indirect call which, the method has a couple of parameters approximately
doubles the total call overhead. However, there is the potential for much more
severe penalties. The indirect call can suffer from what amounts to branch
misprediction which is a fairly stiff penalty on Pentium II processors. The
penalty is incured each time the target of the call changes. Thus, calling
virtual method within a loop where the method might change on every
iteration could see a substantial number of penalties. The workaround is
essentially to sort the method calls.

Example:

 TBaseClass=class
 public
 procedure VMethod; virtual;
 procedure SMethod;
 end;

 TDerivedClass=class(TBaseClass)
 procedure VMethod; override;
 end;

 TDerived2Class=class(TBaseClass)
 procedure VMethod; override;
 end;

implementation

type
 TArray=array[0..100] of TBaseClass;

procedure DoStuff;
var
 b: integer;
 j: integer;
 A:TArray;
begin
 A[0]:=TBaseClass.Create;
 b:=0;
 for j := 1 to 99 do
 begin
 b:=(1+random(2)+b) mod 3; // mix em up
 case b of
 0: A[j]:=TBaseClass.Create;
 1: A[j]:=TDerivedClass.Create;
 2: A[j]:=TDerived2Class.Create;
 end;
 end;
 for j := 0 to 99 do
 A[j].VMethod;
 for j := 0 to 99 do
 A[j].SMethod;
end;

Sorting the calls is somewhat complicated, an example is shown below:

Type
 TSomeVirtualMethod=procedure of object;
 TSomeMethodArray=array[0..100] of TSomeVirtualMethod;

var
 SomeMethodArray:TSomeMethodArray;

// Initialization pass
 for i:=0 to Count-1 do
 SomeMethodArray[i]:=Item[i].SomeVirtualMethod;

// Do something passes
 for i:=0 to Count-1 do
 SomeMethodArray[i];

This, by itself, saves an underwhelming 1 clock cycle per call, but you can sort
the array by the code that's called (using TMethod) to minimize the oh so
painful branch prediction failure that can really dominate this kind of method
calling. Additionally, if the base class method is some sort of do nothing
routine it could be eliminated from the procedure list entirely.

http://delphitools.info/OptimalCode/general.htm Page 12 / 13

 Home Fundamentals Guide Code Links Tools Feedback

Copyright © 2003 Robert Lee (rhlee@optimalcode.com)

// initialization pass

for i:=0 to Count-1 do
begin
 Hold:=ClassArray[i].SomeVirtualMethod;
 if TMethod(Hold).Code<>@TBaseClass.SomeVirtualMethod then
 begin
 j:=0;
 while (j>ArrayCount) and (longint(TMethod(Hold).Code)<SomeMethodArray[j]) do
 inc(j);
 for k:=ArrayCount-1 to j do
 SomeMethodArray[k+1]:=SomeMethodArray[k];
 SomeMethodArray[j]:=Hold;
 inc(ArrayCount);
 end;
end;

This obviously isn't for the faint of heart, and is only useful in certain
situations, but it could be a big time saver in cases where there are many
objects, but only a few versions of the method and the method is relatively
small or empty.

http://delphitools.info/OptimalCode/general.htm Page 13 / 13

http://delphitools.info/OptimalCode/opguide.htm

 Home Fundamentals Guide Code Links Tools Feedback

High Performance Delphi

Integer Optimization Guidelines

Contents

Style Guide

32bit variables

Subrange types

Optimization
Guide

temporary
variables

Integer
Multiplication

Conditionals

zero extending

asm LEA
instruction

large integer
types

Style Guidelines

Use 32 bit variables whenever possible

In 32 bit code, such as generated by Delphi 2 and later, things just get better
when the values being manipulated have a size of 32 bits. 16 bit variables
(Word, ShortInt, WideChar) are especially slow as they require the processor
to temporarily slip into 16 bit mode to work with them. This can double the
time it takes to work with these values. 8 bit variables (Byte, SmallInt, Char)
are not as bad, especially, if you do not mix their usage with 32 bit values.
However, they can still cause the inclusion of additional instructions in order
to zero out the rest of the 32 bit register.

If you must use a smaller type for compatibility, convert it to 32 bit as soon
as possible, and back to the smaller size (if necessary) just prior when it is
needed. You do this simply by assigning it to a 32 variable.

Avoid ordinal subranges

One of the advantages of Pascal has traditionally been its strong typing, and
so the ability to create special subrange types and enumerations has been
part of this. Unfortunately, subranges and enumerations can cause trouble
when attempting to optimize for performance. The problem lies in the fact
that the underlying variable type choosen hold a subrange or enumeration
variable is based on the size of the subrange. For example, enumerations
with less than 256 elements or subranges with boundary values ranging
between 0 and 255 will be stored as byte. This can lead to trouble in that the
underlying variable size may not be handled as efficiently. For instance,
consider the following subrange:

type
 TYear=1900-2000;

Variables of type TYear will saved as 16bit quantities. As already discussed,
16bit variables are particularly slow.

Optimization Techniques

Play around with adding temporary variables to split up complex expressions

Typically, cramming everything into a single expression is the best way to
optimize, but not always. At some point, the expression will become so
complex that the compiler will be forced to break it up on its own. But
frequently you can do a better job than the compiler. Try it!

Integer multiplication

Prior to the Pentium II, integer multiplication was quite expensive. With the
arrival of the Pentium II however, integer multiplication has dropped down to
the same one-cycle execution time as most other instructions. Additionally,
the compiler will avoid doing multiplication by a constant if the same can be
accomplished by utilizing addition, shifting and the lea instruction (mentioned
below). Thus, you need to take your target processor into account when
choosing whether to use multiplication or use some other equivalent method.

Comparison of a variable against multiple ordinal constants

This topic sounds heavy but only boils down to statements like these:

if (x > = 0) and (x < = 10) then

http://delphitools.info/OptimalCode/integer.htm Page 1 / 3

http://delphitools.info/OptimalCode/opguide.htm

 DoSomething;

if (((c > = 'a') and (c < = 'z')) or
 ((c > = '0') and (c < = '9'))) then
 DoSomething;

In each case, there is only a single variable and it is compared to multiple
constants. It may be slightly more efficient and arguably clearer when the
above code is expressed as:

if x in [0..10] then
 DoSomething;

if c in ['0'..'9', 'a'..'z'] then
 DoSomething;

The improvement in efficiency depends upon the likelihood of, for instance x
bein within the range versus being out of the range. If it is more likely to be
within the range then the set notation is better. Efficiency of the set notation
increases as the number of sub-ranges increases. However, there is an
inherent limitation on sets that limit them to 256 elements. This restricts this
usage to values between 0 and 255 for integer types. For the full range of
integers you can use this notation:

case x of
 0..10: DoSomething;
end;

case c of
 'a'..'z',
 '0'..'9' : DoSomething;
end;

which produces equivalent code, but is not as elegant.

Advanced note: This operation may use an additional CPU register.

movzx vs xor/mov

A common requirement is to load values smaller than 32 bits in to a register.
Since they do not overwrite the entire register it is necessary to zero out the
register first. Alternatively, you can use the built in instruction movzx (move
with zero extend). On Pentiums and before this instruction was slower than
using xor reg,reg/mov reg,{value}. However, The PII has streamlined this
instruction so that now it is prefered over the xor/mov combination. Note that
the compiler chooses between these two options based on a set of rules that
is apparently fairly complicated, as I have yet to figure them out.

Utilizing the LEA assembler instruction

There is an assembler instruction called LEA (Load Effective Address) that
can do a couple operations at once. The only way to consciously take
advantage of this instruction in Delphi is with array notation. For it to be fully
effective, the array variable itself must be used again after the desired "trick"
location. For example the following snippet is from a routine that calculates
the length of a Pchar (StrLen) string (i.e. the position of the first #0
character). A total of four characters are processed at a time. Notice the
usage of q in the calculation of r2.

function StrLenPas(tStr: PChar): integer;
var
 p: ^Cardinal;
 q: PChar;
 bytes, r1, r2: Cardinal;
begin
...
 q := PChar(p^); // load 4 characters into q
 r2 := Cardinal(@q[-$01010101]); // subtract 1 from each char (utilizing LEA)
 r1 := Cardinal(q) xor $80808080; // check top bit (q must be used again)
 bytes := r1 and r2; // distinguish between chars>127 and zero.
 inc(p);
...
end;

Performance of large integer types

If you need to work with integers larger than can fit in longint, you have a
couple of options (int64, comp, double, and extended). Three of these types are
actually floating point types. Consequently they are not completely

http://delphitools.info/OptimalCode/integer.htm Page 2 / 3

http://delphitools.info/OptimalCode/exstrlen.zip

 Home Fundamentals Guide Code Links Tools Feedback

Copyright © 2003 Robert Lee (rhlee@optimalcode.com)

interchangeable. Only the relatively new int64 is completely handled as an
integer. comp is sort of a hybrid in that it is stored as an 8 byte integer (the
same as int64) but all operations are performed as floating point. Borland has
officially designated comp as obsolete, and instead favors int64. However, as
can be seen in the following table, comp enjoys a substantial performance lead
in some circumstances. Extended and double can also be used to operate on
large intergers although care must be taken to ensure that the lack of
periodic rounding doesn't accumulate to the point of changing the answer.
Shown below are the measured CPU Pentium II cycles for each operation with
random values in the range (0 < x < 2^63). "Ovhd" refers to the overhed
associated with making a function call and assignment with this type. LongInt
is included for comparison purposes only.

 ovhd add mult div
 Longint 2 1 1 4.7
 Comp 40 4.3 4.4 34
 int64 19 2.6 26.2 804
 double 25 3.1 1.3 35.8
 extended 43 4.1 3.2 34.4

Note: that the out-of-order execution capabilities of the Pentium II make
precise timing measurements nearly impossible for individual operations.
Consequently, the cycle counts shown above should only be considered
approximate.

Aside from the horrid division performance for int64 there is no obvious best
choice. Of the three Floating point based types double is best but it actually
has slightly fewer digits (15 vs 19). int64 is better for addition than comp but
worse otherwise.

So what to do. Well the best answer is to blend a bit. Use int64 as the base
type. Division is easily handled by using trunc(Int64A/Int64B) instead of Int64A
div Int64B. Getting the best performance is somewhat more complicated.
Since comp and int64 have the same format, converting between formats is
free. Using this you can force what would have been an integer based
multiplication to a floating point one. This is shown below:

 var
 A,B,C,D:int64;
 CA:comp absolute A;
 CC:comp absolute C;
 begin
 // Result:=A*B*C*D; // Original expression
 Result:=round(CA*B*C*D); // blended version
 end;

The usage of CA above forces the calculation to be done in floating point.
Note that only one floating point type is needed to force the entire term into
floating point. However, if there are multiple terms they each need a floating
point variable: Result:=round(CA*B+CC*D). Also note that round is used instead of
trunc as was used in division. while it would be possible to convert back into
integer within an expression, it will typically not result in a speed increase
unless two or three additions can be done in for each round.

http://delphitools.info/OptimalCode/integer.htm Page 3 / 3

http://delphitools.info/OptimalCode/opguide.htm

 Home Fundamentals Guide Code Links Tools Feedback

High Performance Delphi

String Optimization Guidelines

Contents

Style Guide

HyperString

string
initialization

Pre-allocating
memory

Thread Safety

"fixing" D5
strings

short strings

Copy

longstrings

delete vs copy

Concatenation

casting to
pchar

Style Guidelines

Use Hyperstring instead of "rolling your own"

There is no point in reinventing the wheel. The HyperString freeware library
addresses the shortcomings and inefficiencies of the native AnsiString function
set included with Delphi. If you are basically doing "normal" sorts of string
operations but need more speed you should start here first.

Do not double-initialize strings

The default string type, AnsiString, is automatically initialized to be empty upon
creation. Consequently, there is no need to initialize it a second time. For
instance the code s := ''; is redundant below:

procedure GreatestOnEarth;
var
 S: string; // a long string, not short!
begin
 S := '';
 ...
end;

Note that this does not extend to functions that return a string since the
behavior of the result variable in this case is better characterized as a passed
var parameter than a local variable.

Use SetLength to preallocate longstrings (AnsiStrings) whereever possible.

Dynamic allocation makes AnsiStrings very powerful. Unfortunately, it is quite
easy to abuse this power. A typical situation looks something like this:

S2 := '';
for I := 2 to length(S1) do
 S2 := S2 + S1[I];

Ignoring the fact that Delete could be used for this, the problem here is that
memory for the S2 string may need to be re-allocated repeatedly inside the loop.
This takes time. A simple and potentially much more efficient alternative is this:

setlength(S2, length(S1) - 1);
for I := 2 to length(S1) do
 S2[I-1] := S1[I];

Here, memory for S2 is allocated only once, prior to the loop.

This sort of "memory manager abuse" is common with AnsiStrings only because
re-allocation is automatic and thus easily ignored. With PChar and manual
allocation, the programmer is made painfully aware of the problem with this
coding style. The older Pascal style strings avoided this problem entirely by
using static allocation.

Thread safety of strings and dynamic arrays - Applies to: Version 5+ and CPU's before
Pentium III and Athlon

The thread safety of strings and dynamic arrays has been improved by
preventing reference count problems. Previously, Reference counts were read
altered then saved resulting in the potential for another reference on another
thread to read or write in between those operations. This has been fixed by
directly altering the reference count and locking that single instruction to
prevent preemption. Everything has a price unfortunately. The lock CPU

http://delphitools.info/OptimalCode/string.htm Page 1 / 3

http://delphitools.info/OptimalCode/opguide.htm
http://efd.home.mindspring.com/

instruction prefix used to achieve this thread safety is quite expensive on
Pentium II processors. My measure of the effect of this change is an additional
28 cycles per refcount adjustment, which in a worst case scenario can result in a
2x decrease in performance. Real world reports have placed the impact in the 0
to 20% range.

Reverting back to version 4 longstring behavior

It is possible to undo the change to longstring behavior described above. You
can even make longstrings even faster before. To do this you need to make
some changes in system.pas and recompile it.

The easiest way to recompile system.pas is to use the make utility and the
makefile located in the /source/Rtl directory. Copy the source to a new directory!
You don't want to replace the originals. The make also expects certain other
subdirectoies such as lib and bin to be present. Make sure your new location has
these as well. Also you will need TASM as there are many external asm files that
need compiling as well.

The changes that need to be made are fairly simple. First, you need to get rid of
all the lock prefixes. I prefer to do a global replace of 'lock' with '{lock}'. This
will return strings and dynamic arrays to the Pre Version 5 performance levels.
To go beyond that you need to eliminate two xchg instructions. These
instructions have implicit lockprefixes. The original code is shown below:

procedure _LStrAsg{var dest: AnsiString; source: AnsiString};
...
@@2: XCHG EDX,[EAX]
...

procedure _LStrLAsg{var dest: AnsiString; source: AnsiString};
...
 XCHG EDX,[EAX] { fetch str }
...

In both cases you can replace the XCHG instruction by using three move
instructions and ecx as a temp register:

procedure _LStrAsg{var dest: AnsiString; source: AnsiString};
...
@@2: { XCHG EDX,[EAX]}
 mov ecx,[eax]
 mov [eax],edx
 mov edx,ecx
...

procedure _LStrLAsg{var dest: AnsiString; source: AnsiString};
...
 {XCHG EDX,[EAX]} { fetch str }
 mov ecx,[eax]
 mov [eax],edx
 mov edx,ecx
...

The above changes will result in string assignments executing about 6 times
faster than they do in Version 5. (2 times faster than Version 4).

Avoid using ShortStrings - Applies to: Version 5+

Presumably in an effort to phase out all the old shortstring methods and
maintain only one set of string routines, shortstrings are converted to
longstrings prior to many manipulations. This effectively makes these shortstring
operations much slower.

Avoid using Copy to create dynamic string temporaries.

This also relates to memory manager abuse. A typical situation looks something
like this:

if Copy(S1,23,64) = Copy(S2,15,64) then
 ...

Once again, the problem here is memory allocation for the string temporaries
which takes time. It is unfortunate but the native AnsiString functions offer little
alternative other than something like this:

I:=1;
Flag := False;

http://delphitools.info/OptimalCode/string.htm Page 2 / 3

 Home Fundamentals Guide Code Links Tools Feedback

Copyright © 2002 Robert Lee (rhlee@optimalcode.com)

repeat
 Flag := S1[I+22] <> S2[I+14];
 Inc(I);
until Flag or (I>64);
if Not Flag then
 ...

Use longstrings (AnsiString) exclusively and cast to PChar when necessary.

Popular myth has it that AnsiString is somehow inherently less efficient. This
stems from poor coding practices, memory manager abuse and lack of native
support functions as described above. Once an AnsiString has been dynamically
allocated, it is just like any other string; a linear series of bytes in memory, and
no more or less efficient. With adequate support functions and proper coding,
the performance difference with AnsiString is negligible.

Prefer Delete over Copy to remove from the end of the string

copy will always copy the entire string. However, delete will just cut off the end
of the current one.

Change: AString :=copy(AString, 1, length(AString)-10);
To: Delete(AString, length(AString)-10, 10);

Concatenating Strings

The best way to concatenate strings is also the simplest. s1:=s2+s3+s4; will
produce the best results regardless of the number of strings or whether they are
compile-time constants or not. Note: In D2 when combining compile-time
constants the s1:=Format([%s%s],s2,s3) approach may be faster.

Casting to PChar

Essentially there are 3 ways to convert a string to a pchar: typecast as pchar,
take the address of the first character, and typecast the string to a generic
pointer. Each of these does different things. Taking the address of the first
character (i.e. p:=@s[1];) will force a call to UniqueString to ensure that the
pchar returned points to a unique string only referenced by s in the above
example. Typecasting a string to a PChar returns the address of the first
character or if the string was empty it returns the address of a null. Thus the
pchar is guarenteed to be non-nil. The simplest is casting as a generic pointer
(i.e. p:=pointer(s);). This is also the fastest, as there is no hidden function call.

http://delphitools.info/OptimalCode/string.htm Page 3 / 3

http://delphitools.info/OptimalCode/opguide.htm

 Home Fundamentals Guide Code Links Tools Feedback

High Performance Delphi

Floating Point Optimization Guidelines

Contents

Style Guide

Extended type

Mixing Types

Function Calls

Constants

FP Control Word

Round vs Trunc

function vs procedure

Trapping Exceptions

Optimize Guide

Compiler FP
optimizations

division

Checking for Zero

division

Style Guidelines

Do not use extended unless absolutely necessary

While the FPU performs calculations internally in extended (80 bit)
precision, it does not load and store in this format very efficiently.
Consequently, using the extended type can double the overall execution
time of the simpler arithmetic operations (+,-,*). This is not due to
additional time for actually performing the operation, but rather due to
the extra time needed to load and store these values. Additionally, the
size of extended type variables is awkward (10 bytes, 12 bytes with
doubleword alignment), leading to in increased likelihood for the variable
to straddle a cache line which causes a performance loss. Finally, in
compiler versions 2 through 4 local extended type variables are aligned in
the last 10 bytes of the 12 bytes (3 dwords) allocated for them, instead
of the first 10. This means that they always are misaligned as local
variables. This has been fixed in Version 5 and does not apply to compiler
generated temporary variables in any version.

Avoid mixing floating point types

The basic problem is that you will force an unnecessary type "conversion"
step in two cases: 1) assigning one variable to another, and 2) Passing a
variable as a parameter. In these, two instances a variable will have to
be loaded on to the FP stack and saved as the new type, rather than
simply copied. This can take 3 or 4 times a long.

Strive to have one function call in each assignment expression

The floating point unit's register stack is only eight entries deep.
Consequently, to prevent the stack from overflowing, function calls from
within an expression require that the register stack be unloaded prior to
making the call. The only exception is that the first function call in an
expression is free from this unloading because it can be called just after
its arguments are determined, but before the rest of expression is
evaluated. Delphi unloads the stack by saving any stored values to
temporary (and invisible) extended variables. As was already noted,
extended is bad, so you should make your own temporary variables and
break up expressions so that only one function call is made per variable
assignment. This rule also covers compiler "magic" functions found in the
SYSTEM unit, like Abs and Sqr. It does not include "nested" calls. That is,
function calls contained in the parameter expression another function call.
Since floating point parameters are always passed on the stack each
parameter expression represents a separate expression.

Floating point constants

Floating point constants must be saved in the executable as a specific
type (i.e. single, double or extended). Basically, whole number constants
are saved as single and fractional numbers are saved as extended. As
already mentioned, using extended incurs a high cost, so you should force
the constants to be of a given size (single or double) by making them
typed constants. Note that this does not increase the overall executable
size since the value had to be included in the binary anyway. For
example:

const
 e: Double = 2.71828; // Euler constant
begin
 ...
 SomeVariable := e*sqr(r);

http://delphitools.info/OptimalCode/float.htm Page 1 / 4

http://delphitools.info/OptimalCode/opguide.htm

 ...

will be both faster (use of double) and smaller (double only requiring 8
bytes) than the equivalent routine using the extended type. Note, though,
that a typed "constant" can be written to with the $J+ directive.

Also, the compiler will combine constants at compile time if possible. If
the operation between two constants has a higher precedence than any
operation involving those constants and any variable or variable
expressions then the constants will be "folded" together. Additionally, in
Delphi 2 and 3 division by a constant would always be converted into
multiplication by its reciprocal. Unfortunately, this was eliminated in
version 4. So as an example, in D2 and D3 the statement:

fp:=fp*3*4/5+3*4/2;

will actually be calculated as:

fp:=fp*3*4*0.2+6

In D4 the same statement will actually be calculated as:

fp:=fp*3*4/5+6

You can get better constant folding by placing the constants in front of
any variables:

fp:=3*4/5*fp+3*4/2;

Will actually be calculated as:

fp:=2.4*fp+6

Set the control word precision to the appropriate level

Floating point division and square root instructions can take a substantial
amount of time. However, you can save some of that time if you do not
need maximum accuracy. You can modify the level of accuracy by
changing the FPU's control word. The default accuracy, as initialized by
the Delphi runtime library, is the slowest, but most precise one (i.e.
extended). Delphi supports direct modification of the FPU's control word
with the Set8087CW procedure and the global variable Default8087CW. Use the
following lines to set the control word to different precision levels:

Single: Set8087CW(Default8087CW and $FCFF);
Double: Set8087CW((Default8087CW and $FCFF) or $0200);
Extended: Set8087CW(Default8087CW or $0300);

Note that changing this control word only changes the execution time of
division and, in the case of Pentium II and Pentium III processors, square
roots.

As of version 6 this has gotten easier as you can simply call the
SetPrecisionMode() with the proper precision level constant
(pmSingle,pmDouble, or pmExtended).

Prefer Round over Trunc

Trunc reads and sets the FPU control word, which is very costly. The Round
function, on the other hand, does not do this and therefore is about 2.5
times faster on a Pentium II.

Favor procedures with var parameters over functions

This is an overhead management issue and hence comes into play more
with small functions where overhead is a greater percentage of the total
processing time. For example changing:

function Calc(a: Double): Double;
begin
 result := a*1.1;
end;

to:

procedure Calc(var Result; a: Double);

http://delphitools.info/OptimalCode/float.htm Page 2 / 4

begin
 Result := a*1.1;
end;

cuts execution time in half (on a Pentium II). This is especially true if you
are mainly passing a value around (including simple assignment) rather
than actually using it. For instance:

function SetValue(NewValue: Double): Double;
begin
 Result := Value;
 Value := NewValue;
end;

results in a function composed almost entirely of overhead.

The downside of this technique is that you need to use var instead of
const for parameters that are not supposed to change, because const does
not really do anything on floating point parameters except to force a
compile-time check that the parameter indeed is not changed.

Trapping Floating Point Exceptions

FP exceptions (such as divide by zero) aren't actually triggered when the
error occurs. Instead they are delayed until the next floating point
instruction. Presumably this implementation was used to allow for testing
and handling of the error locally. However, it can have the rather odd
effect of making the wrong code look guilty if and when the exception is
finally triggered. The solution to this is to stick a wait or FWait instruction
in to force the exception. This just what the compiler does after each and
every floating point statement. Of course executing all those waits can be
costly, so in a hand written floating point assembly routine you may want
to simply stick one in right at the end of the routine once you have it
debugged. This keeps the cost low, but still ensures that any exception
generated still points to at least the proper routine.

Of course, every rule needs an exception. One example where this is not
the case is Windows 95 (!) and this code (From Stefan Hoffmeister's FPU
Demo):

 x := -1;
 asm
 fld x
 // Generate an IEEE invalid operation:
 // sqrt(-1)
 fsqrt

 fwait
 end;

Under NT, this (correctly) raises an FP exception. Not so on Win95. Jam in
an FXAM before the FWAIT in Win95 - and get the exception. Thank you,
Microsoft.

Optimization Techniques

You need to do your own floating point optimization

Delphi does no floating point optimization. You are going to get exactly
what you ask for. Thus, do not assume things like common expressions
are going to be combined. You need to do all this yourself.

Make great effort to reduce the number of divisions

Division is very expensive, taking about 20-40 times as long as
multiplication, addition, or subtraction. Move divisions outside of loops
whenever possible. Do not forget to convert a division by a constant into
the corresponding multiplication with its reciprocal.

How to avoid floating point checks for zero

Under certain circumstances it can be beneficial avoid a direct comparison
to check for a zero in a floating point variable and instead utilize
typecasting to test the underlying representation of the variable. This is
because floating point comparisons require a true floating point based

http://delphitools.info/OptimalCode/float.htm Page 3 / 4

 Home Fundamentals Guide Code Links Tools Feedback

Copyright © 2003 Robert Lee (rhlee@optimalcode.com)

zero check by taking advantage of the way zero is stored. Considering
substantially reduced readability of this technique it should be used
sparingly.

To check a single variable for zero use: DWord(Pointer(SomeSingleVar)) shl 1
= 0

Checking a double variable is more complicated:

type
 PDoubleData=^TDoubleData
 TDoubleData=record lo,hi:DWord end;

// two possible ways

var
 DoubleData:PDoubleData;
...
 DoubleData:=@SomeDoubleVar;
 if (DoubleData.hi shl 1) + DoubleData.Lo = 0 then
...

// or

var
 DoubleData:TDoubleData absolute SomeDoubleVar;
...
 if (DoubleData.hi shl 1) + DoubleData.Lo = 0 then
...

The above techniques can shave about 30-40% off the comparison time
on a Pentium II.

http://delphitools.info/OptimalCode/float.htm Page 4 / 4

http://delphitools.info/OptimalCode/opguide.htm

